Critical behaviour of a model with NNN interaction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 23 L913
(http://iopscience.iop.org/0305-4470/23/17/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 08:55

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Critical behaviour of a model with nNN interaction

Wei Fan and Bo-wei Xu
Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China

Received 22 March 1990

Abstract

A one-dimensional quantum model with next-nearest-neighbour interaction is studied. Under the long-wavelength approximation, we predict that this model belongs to the same universality class as the Ising model. This conclusion is checked with a numerical solution which is consistent with the prediction in both critical point and critical exponent.

Recently, we studied a quantum model with NNN interaction whose Hamiltonian takes on the form of (Xu and Tang 1989)

$$
\begin{equation*}
H=g \sum_{n} \sigma_{n}^{z}-\sum_{n} \sigma_{n}^{x} \sigma_{n+1}^{x}-\frac{\lambda}{2} \sum_{n}\left(\sigma_{n}^{x} \sigma_{n+2}^{x}+\sigma_{n}^{y} \sigma_{n+2}^{y}\right) . \tag{1}
\end{equation*}
$$

In our previous work, we predicted that this model belongs to the same universality class as the Ising model and gave the critical point condition

$$
\begin{equation*}
g-1-\lambda=0 \tag{2}
\end{equation*}
$$

We should notice that our result depends on the long-wavelength approximation, which is feasible only under the condition that this model does have critical phenomenon. So, we should ascertain the existence of critical point to guarantee our conclusion.

As is well known, a one-dimensional quantum chain is equivalent to a twodimensional infinitely long classical strip with finite width. It has been proved that for two-dimensional classical systems on infinitely long strips of finite width N, the scaling dimension $\chi=\eta / 2$ relates to the energy gap between the ground state and the first excited state (Cardy 1984, Alcaraz and Barber 1987, von Gehlen et al 1985) as

$$
\begin{equation*}
\Delta E=E_{1}-E_{0}=\pi \eta \xi / N \tag{3}
\end{equation*}
$$

here ξ is a coefficient which depends on g and λ. We can use this property to determine whether a model has critical phenomenon. That is, if a model has critical phenomenon, there must be a critical point at which η will approach a fixed value when $N \rightarrow \infty$, and the critical point can be found. In fact, all we should do is calculate the energy gap ΔE with different N (for a corresponding quantum chain, N is the number of lattice sites).

Many numerical methods have been developed to calculate the energy gap between the ground state and the first excited state of a one-dimensional quantum chain (Hamer and Barber 1981, Duxbury and Barber 1982). But we take Lanczos' approach which seems to be the most efficient one (Roomany et al 1980).

Figure 1. Asymptotic behaviour of $\eta \xi$ with $\lambda=0.01$ and $\mathrm{A} g=1.05, \mathrm{~B} g=1.03, \mathrm{C} g=1.01$, D $g=0.99, \mathrm{E} g=0.97$. Lines are drawn to illustrate the asymptotic behaviour but only nine points exist on each line in reality.

Figure 2. Asymptotic behaviour of $\eta \xi$ with $\lambda=0.05$ and A $g=1.09$, B $g=1.07, \mathrm{C} g=1.05$, $\mathrm{D} g=1.03, \mathrm{E} g=1.01$.

Here we give our numerical results in figures 1-3 and tables 1-8. The largest system used in our calculations is a chain of nine sites. The exponents of both of Ising model ($\lambda=0$) and the model of (1) with different λ have accuracies of a percent at these sites. While the Ising model does have critical phenomenon, so these results convince us of the existence of critical phenomenon in the model of (1). Furthermore, the critical points are consistent with the critical condition of (2). In addition to the relation of (3), conformal theory predicts that the ground-state energy per site should approach its bulk limit e_{0}, namely (Nightingale and Blöte 1983, Blöte et al 1986)

$$
\begin{equation*}
E_{0} / N=e_{0}-\pi c \xi / 6 N^{2}+\mathrm{O}\left(1 / N^{2}\right) \tag{4}
\end{equation*}
$$

Figure 3. Asymptotic behaviour of $\eta \xi$ with $\lambda=0.10$ and A $g=1.14$, $\mathrm{B} g=1.12, \mathrm{C} g=1.10$, D $g=1.08, \mathrm{E} g=1.06$.
where c is the central charge of the conformal class to which this model belongs. We can calculate both e_{0} and $c \xi$, and hence the value of c / η, which identifies the universality class of the model. For example, c / η is 2 for the Ising class ($c=0.5, \eta=0.25$, table 1 and table 2). From table 3 to table 8 , we can see that for the model of (1) with $\lambda \neq 0$, c / η also approaches 2 , so we can reasonably say that this model really belongs to Ising universality class. This result is consistent with our previous conclusion with respect to both critical point and critical exponent.

Table 1. Mass gap amplitude as a function of lattice size; $\lambda=0.00, g=1.00$ (Ising model).

N	E_{0}	E_{1}	$N\left(E_{1}-E_{0}\right)$	$\eta \xi$
2	-2.97321	-2.00000	1.94642	0.61956
3	-4.25183	-3.72693	1.57470	0.50124
4	-5.59070	-5.17321	1.66996	0.53156
5	-6.92538	-6.59053	1.67650	0.53365
6	-8.27079	-7.99031	1.68288	0.53568
7	-9.62031	-9.37975	1.68392	0.53601
8	-10.97310	-10.76261	1.68392	0.53061
9	-12.32808	-12.14104	1.68336	0.53583

Table 2. Value of c / η as a function of lattice size; $\lambda=0.00, g=1.00$ (Ising model) ($b=\pi c \xi / 6$).

$N 1$	$N 2$	e_{0}	b	$c \xi$	c / η
2	3	1.36181	0.49916	0.95333	1.90193
3	4	1.37247	0.40323	0.77011	1.44878
4	5	1.36293	0.55596	1.06181	1.98970
5	6	1.36324	0.54826	1.04710	1.95471
6	7	1.36288	0.56112	1.07166	1.99933
7	8	1.36284	0.56291	1.07508	2.05325
8	9	1.36282	0.56440	1.07792	2.01168

Table 3. Mass gap amplitude as a function of lattice size; $\lambda=0.01, g=1.01$.

N	E_{0}	E_{1}	$N\left(E_{1}-E_{0}\right)$	$\eta \xi$
2	-2.84260	-2.00000	1.68520	0.53642
3	-4.02502	-3.49011	1.60473	0.51080
4	-5.26242	-4.86260	1.59928	0.50970
5	-6.51729	-6.19855	1.59370	0.50729
6	-7.78141	-7.51635	1.59036	0.50632
7	-9.05075	-8.82387	1.58816	0.50553
8	-10.32334	-10.12499	1.58680	0.50509
9	-11.59807	-11.42188	1.58571	0.50475

Table 4. Value of c / η as a function of lattice size; $\lambda=0.01, g=1.01$.

$N 1$	$N 2$	e_{0}	b	$c \xi$	c / η
2	3	1.27797	0.57331	1.09494	2.04120
3	4	1.28209	0.53626	1.02418	2.01187
4	5	1.28186	0.53987	1.03108	2.03252
5	6	1.28200	0.53643	1.02451	2.02380
6	7	1.28206	0.53431	1.02046	2.01859
7	8	1.28210	0.53245	1.01690	2.01331
8	9	1.28211	0.53153	1.01515	2.01119

Table 5. Mass amplitude as a function of lattice size; $\lambda=0.05, g=1.05$.

N	E_{0}	E_{1}	$N\left(E_{1}-E_{0}\right)$	$\eta \xi$
2	-2.90000	-2.00000	1.80000	0.57296
3	-4.12546	-3.59479	1.59201	0.50675
4	-5.40772	-5.00000	1.63088	0.51913
5	-6.69839	-6.37204	1.63175	0.51940
6	-7.99819	-7.72619	1.63200	0.51948
7	-9.30303	-9.07000	1.63120	0.51923
8	-10.61112	-10.40734	1.63024	0.51892
9	-11.92137	-11.74035	1.62918	0.51858

Table 6. Value of c / η as a function of lattice size; $\lambda=0.05, g=1.05$.

$N 1$	$N 2$	e_{0}	b	c / η
2	3	1.3153	0.5389	1.796
3	4	1.3221	0.4777	1.800
4	5	1.3179	0.5445	2.002
5	6	1.3179	0.5437	1.999
6	7	1.3178	0.5465	2.010
7	8	1.3179	0.5466	2.012
8	9	1.3178	0.5468	2.014

Table 7. Mass amplitude as a function of lattice size; $\lambda=0.10, g=1.10$.

N	E_{0}	E_{1}	$N\left(E_{1}-E_{0}\right)$	$\eta \xi$
2	-2.82843	-2.00000	1.65686	0.52739
3	-4.00000	-3.46410	1.60770	0.51175
4	-5.22625	-4.82843	1.59128	0.50652
5	-6.47214	-6.15537	1.58385	0.50416
6	-7.72741	-7.46410	1.57986	0.50289
7	-8.98792	-8.76258	1.57738	0.50210
8	-10.25166	-10.05468	1.57584	0.50161
9	-11.51754	-11.34256	1.57482	0.50128

Table 8. Value of c / η as a function of lattice size; $\lambda=0.10, g=1.10$.

$N 1$	$N 2$	e_{0}	b	$c \xi$	c / η
2	3	1.26863	0.58235	1.11221	2.10889
3	4	1.27286	0.55071	1.05178	2.07648
4	5	1.27286	0.53931	1.03001	2.04301
5	6	1.27307	0.53397	1.01981	2.02789
6	7	1.27315	0.53101	1.01415	2.01983
7	8	1.27319	0.52916	1.01062	2.01475
8	9	1.27321	0.52780	1.00803	2.01091

References

Alcaraz F C and Barber M N 1987 J. Phys. A: Math. Gen. 20179
Blöte H W J, Cardy J L and Nightingale M P 1986 Phys. Rev. Lett. 56742
Cardy J L 1984 J. Phys. A: Math. Gen. 18 L125
Duxbury P M and Barber M N 1982 J. Phys. A: Math. Gen. 153219
Hamer C J and Barber M N 1981 J. Phys. A: Math. Gen. 14259
Nightingale M P and Blöte H W 1983 J. Phys. A: Math. Gen. 16 L657
Roomany H H, Wyld H W and Holloway L E 1980 Phys. Rev. D 211557
von Gehlen G, Rittenberg V and Ruegg H 1985 J. Phys. A: Math. Gen. 19107
Xu B W and Tang K F 1989 ACTA Physica Sinica 38645

